The Error Function Erf(x) and Normal Distribution

Table of Contents

\( \) \( \) \( \) \( \) \( \) \( \)

Error Function

The error function \( \text{Erf} \; (x) \) is defined by the integral [4] \[ \displaystyle \text{Erf} \; (x) = \dfrac{2}{\sqrt{\pi}} \int_0^{x} \; e^{-t^2} \; dt \] Computer programs, in different languages, may easily be developed to calculate the \( \text{Erf} \; (x) \).
A table of values of \( \text{Erf} (x) \) in the interval \( x \in [-3 \; , \; 3] \) was created using Google sheets is presented below along with its graph. (you might need to scroll down).

From the definition and the graph, we can say that \( \text{Erf} \; (x) \) is an odd function and therefore
\( \qquad \text{Erf} \; (-x) = -\text{Erf} \; (x) \)



Normal Distribution Cumulative Function

The normal density function of a random variabe \( X \) with mean \( \mu \) and standard deviation \( \sigma \) is given by [1] [2] [3] [4].
\[ f_{X}(x) = \dfrac{1}{\sigma \sqrt{2 \; \pi }} \; e^{-\frac{1}{2} \left(\dfrac{x -\mu}{\sigma} \right)^2 } \qquad (I) \]
whise graph is shown below.

Graph of Normal Distribution

The cumulative distribution function of \( f_{X}(x) \) is given by
\[ F_{X}(x,\mu,\sigma) = \int_{-\infty}^{x} f_{X}(t) dt \]
When \( f_{X}(t) \) is substituted by \( f_{X} \) defined in \( (I) \), we have \[ \displaystyle F_{X}(x,\mu,\sigma) = \dfrac{1}{\sigma \sqrt{2 \; \pi }} \int_{-\infty}^{x} \; e^{-\frac{1}{2} \left(\dfrac{t -\mu}{\sigma} \right)^2 } dt \qquad (II) \]
\( F_{X}(x,\mu,\sigma) \) is used to calculate the probabilities as follows
\( \qquad P( X \lt x) = F_{X}(x,\mu,\sigma) \)
\( \qquad P( b \le X \le a) = F_{X}(a) - F_{X}(b) \)




Relationship between \( F_{X}(x,\mu,\sigma) \) and \( \text{Erf} \; (x) \)

We now develop the relationship between the cumulative distribution function for a normal distribution defined above and given by \[ F_{X}(x,\mu,\sigma) = \dfrac{1}{\sigma \sqrt{2 \; \pi }} \int_{-\infty}^{x} \; e^{-\frac{1}{2} \left(\dfrac{t -\mu}{\sigma} \right)^2 } dt \qquad (III) \] and the error function defined by \[ \displaystyle \text{Erf} \; (x) = \dfrac{2}{\sqrt{\pi}} \int_0^{x} \; e^{-t^2} \; dt \qquad (IV) \]

Let \( z = \dfrac{t-\mu}{\sigma \sqrt 2} \) and therefore \( \dfrac{dz}{dt} = \dfrac{1}{\sigma \sqrt 2} \) or \( dz = \dfrac{1}{\sigma \sqrt 2} dt \)
Substitute the above in \( (III) \) and write \[ \displaystyle F_{X}(x,\mu,\sigma) = \dfrac{1}{ \sqrt{\pi} } \int_{-\infty}^{\dfrac{x-\mu}{\sigma \sqrt 2}} \; e^{-z^2 } dz \]
Split the interval of integration and write \( F_{X}(x,\mu,\sigma) \) as follows \[ \displaystyle F_{X}(x,\mu,\sigma) = \dfrac{1}{ \sqrt{\pi} } \left( \int_{-\infty}^{0} \; e^{-z^2 } dz + \int_{0}^{\dfrac{x-\mu}{\sigma \sqrt 2}} \; e^{-z^2 } dz \right) \qquad (V) \]

We now use the Gaussian integral Gaussian integral which is given by \[ \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt {\pi}\] and because \( e^{-x^2} \) is an even function, we have \[ \int_{-\infty}^{0} e^{-x^2} dx = \int_{0}^{\infty} e^{-x^2} dx \] Use the Gaussian integral to write \[ \int_{-\infty}^{0} e^{-x^2} dx = \int_{0}^{\infty} e^{-x^2} dx = \dfrac{\sqrt {\pi}}{2}\] Substitute in \( \qquad (V) \) and write \[ \displaystyle F_{X}(x,\mu,\sigma) = \dfrac{1}{ \sqrt{\pi} } \left( \dfrac{\sqrt {\pi}}{2} + \int_{0}^{\dfrac{x-\mu}{\sigma \sqrt 2}} \; e^{-z^2 } dz \right) \qquad (V) \] Using \( (IV) \) , we write \( \displaystyle \int_0^{\left(\dfrac{x - \mu}{\sigma\sqrt 2}\right)} \; e^{-t^2} \; dt = \dfrac{\sqrt{\pi}}{2} \text{Erf} \; \left(\dfrac{x - \mu}{\sigma\sqrt 2}\right) \) which we substitute in \( (V) \) above to write

\[ \displaystyle F_{X}(x,\mu,\sigma) = \dfrac{1}{ \sqrt{\pi} } \left( \dfrac{\sqrt {\pi}}{2} + \dfrac{\sqrt{\pi}}{2} \text{Erf} \; \left(\dfrac{x - \mu}{\sigma\sqrt 2}\right) \right) \qquad (V) \] Simplify and write the relationship between between \( F_{X}(x,\mu,\sigma) \) and \( \text{Erf} \; (x) \) as follows: \[ \boxed {\displaystyle F_{X}(x,\mu,\sigma) = \dfrac{1}{2 } \left( 1 + \text{Erf} \; \left(\dfrac{x - \mu}{\sigma\sqrt 2}\right) \right)} \] Hence the normal distribution cumulative function \( F_{X}(x,\mu,\sigma) \) may be calculated using the error function \( \text{Erf} (x) \).


More References and Links