It can be shown that the rectangular

\( x = r \cos \theta \) , \( y = r \sin \theta \) , \( z = z \) (I)

\( r = \sqrt {x^2 + y^2} \) , \( \tan \theta = \dfrac{y}{x} \) , \( z = z \) (II)

with \( 0 \le \theta \lt 2\pi \) The calculator calculates the cylindrical coordinates \( r \) , \( \theta \) and \( z \) given the rectangular coordinates \( x \) , \( y \) and \( z \) using the formulas in II.

Angle \( \theta \) is given in radians and degrees.