3D GPS Calculator: Distance and Angle Between Two Points in Space Using GPS Coordinates

Table of Contents

GPS Coordinates

GPS and ECEF coordinates

WGS 84 Parameters

Parameter Description Value
\( a \) Semi-major axis 6,378,137 m
\( f \) Flattening \(\frac{1}{298.257223563}\)
\( e^2 \) Square of eccentricity 0.00669437999014
\( b \) Semi-minor axis \( a(1 - f) \approx 6,356,752.3142 \, \text{m} \)

LLH to ECEF Conversion

Prime Vertical Radius of Curvature

\[ N = \frac{a}{\sqrt{1 - e^2 \sin^2 \phi}} \]

ECEF Coordinates

\[ \begin{aligned} X &= (N + h) \cos \phi \cos \lambda \\ Y &= (N + h) \cos \phi \sin \lambda \\ Z &= \left(N(1 - e^2) + h\right) \sin \phi \end{aligned} \]

Distance Between Points

\[ \text{Distance} = \sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2} \]

Angle Between Vectors

\[ \theta = \arccos\left(\frac{\vec{OA} \cdot \vec{OB}}{\|\vec{OA}\| \|\vec{OB}\|}\right) \] \[ \vec{OA} \cdot \vec{OB} = X_A X_B + Y_A Y_B + Z_A Z_B \]

Area of Triangle OAB

\[ \text{Area} = \frac{1}{2} \|\vec{OA} \times \vec{OB}\| \] \[ \|\vec{OA} \times \vec{OB}\| = \sqrt{(Y_A Z_B - Z_A Y_B)^2 + (X_A Z_B - Z_A X_B)^2 + (X_A Y_B - Y_A X_B)^2} \]

GPS Geometry Calculator

Point A

Point B

Results will appear here...