Table of Contents

Formulas for Numerical Methods

In what follows \( f_m = f(x_m) \) and \( y_m = y(x_m) \).
Examples
\( f_0 = f(x_0) \) , \( f_1 = f(x_1) \) , \( f_2 = f(x_2) \) ...
\( y_0 = y(x_0) \) , \( y_1 = y(x_1) \) , \( y_2 = y(x_2) \) ...
numerical integration of functions

Trapezoidal Rule of Integration

\( \displaystyle \int_{x_0}^{x_m} f(x) dx = h \left( \dfrac{f_0}{2} + f_1 + f_2 + f_3 + ... + f_{m-1}+\dfrac{f_m}{2}\right) \)
\( h = \dfrac{x_m - x_0}{m} \)

Simpson Rule of Integration

The number of intervals must be even and is taken to be \( 2 m\)
\( \displaystyle \int_{x_0}^{x_{2m}} f(x) dx = \dfrac{h}{3} \left[ f_0 + 4( f_1 + f_3 + f_5 + ...) + 2 ( f_2 + f_4 +f_6 + .... )+ f_{2m} \right] \)
\( h = \dfrac{x_{2m} - x_0}{2 m} \)

Euler Method for Differential Equations

\( y' = f(x,y) \)
\( y_{n+1} = y_n + h f(x_n , y_n) + O(h^3)\)

Second Order Runge-Kutta Method for Differential Equations

\( y' = f(x,y) \)
\( y_{n+1} = y_n + \dfrac{1}{2} (k_1 + k_2) + O(h^3) \)
where
\( k_1 = h f(x_n , y_n) \)
\( k_2 = h f(x_n+h , y_n+k_1) \)

Fourth Order Runge-Kutta Method for Differential Equations

\( y' = f(x,y) \)
\( y_{n+1} = y_n + \dfrac{1}{6} (k_1 + 2 k_2 + 2 k_3 + k_4) + O(h^5) \)
where
\( k_1 = h f(x_n , y_n) \)
\( k_2 = h f(x_n+\dfrac{h}{2} , y_n + \dfrac{k_1}{2} ) \)
\( k_3 = h f(x_n+\dfrac{h}{2} , y_n + \dfrac{k_2}{2} ) \)
\( k_4 = h f(x_n+ h , y_n + k_3) \)

Second Order Runge-Kutta Method for Systems of Differential Equations

\( y' = f(x,y,z) \)     ,     \( z' = g(x,y,z) \)
\( y_{n+1} = y_n + \dfrac{1}{2} (k_1 + k_2) + O(h^3) \)
\( z_{n+1} = z_n + \dfrac{1}{2} (l_1 + l_2) + O(h^3) \)
where
\( k_1 = h f(x_n , y_n , z_n) \)     ,     \( l_1 = h g(x_n , y_n , z_n) \)
\( k_2 = h f(x_n+h , y_n + k_1 , z_n + l_1) \)     ,     \( l_2 = h g(x_n+h , y_n + k_1 , z_n + l_1) \)

Fourth Order Runge-Kutta Method for Systems of Differential Equations

\( y' = f(x,y,z) \)     ,     \( z' = g(x,y,z) \)
\( y_{n+1} = y_n + \dfrac{1}{6} (k_1 + 2 k_2 + 2 k_3 + k_4) + O(h^5) \)
\( z_{n+1} = z_n + \dfrac{1}{6} (l_1 + 2 l_2 + 2 l_3 + l_4) + O(h^5) \)
where
\( k_1 = h f(x_n , y_n , z_n) \)     ,     \( l_1 = h g(x_n , y_n , z_n) \)
\( k_2 = h f(x_n+\dfrac{h}{2} , y_n + \dfrac{k_1}{2} , z_n + \dfrac{l_1}{2}) \)     ,     \( l_2 = h g(x_n+\dfrac{h}{2} , y_n + \dfrac{k_1}{2} , z_n + \dfrac{l_1}{2} ) \)
\( k_3 = h f(x_n+\dfrac{h}{2} , y_n + \dfrac{k_2}{2} , z_n + \dfrac{l_2}{2} ) \)     ,     \( l_3 = h g(x_n+\dfrac{h}{2} , y_n + \dfrac{k_2}{2} , z_n + \dfrac{l_2}{2}) \)
\( k_4 = h f(x_n + h , y_n + k_3 , z_n + l_3) \)     ,     \( l_4 = h g(x_n + h , y_n + k_3 , z_n + l_3) \)

Note: The fourth order Runge-Kutta method for systems of differential equations is more stable. I used it in my PhD work on "Evanescent Field Effects on Pulse Propagation in Transversely Inhomogeneous Waveguides" , page 43, and it gave excellent results.

More References and Links

Handbook of Mathematical Functions
George F. Simmons, P.; Steven G. Krantz; (2007). Differential Equations, Theorey, technique and Practice.
Evanescent field effects on pulse propagation in transversely inhomogeneous waveguides. PhD Thesis - Nottingham University - UK - 1984 - by Abdelkader Dendane
Fox, L.; Numerical Solutions of Ordinary and Partial Differential Equations, Oxford, Pergamon (1962)
Daniel, J. W. ; Moore, R. E. ; Computation and Theory in Ordinary Differential Equations, H. W. Freeman and Co. (1970)
Williams, P. W. ; Numerical Computation , Thomas Nelson and Sons (1972) Engineering Mathematics with Examples and Solutions